Mid-Term Examination ALGEBRA-III 27th September 2002

Instructor:

S.P. Inamdar

- 1. (a) Define a primitive element in Z[X]. If a primitive element divides another element of Z[X] in Q[X], show that the division takes place in Z[X] itself. (7)
 - (b) Let p be a prime number. Prove that $X^{p-1} + X^{p-2} + \cdots + X + 1$ is irreducible in Z[X]. (3)
- 2. (a) Determine all polynomials f in $F_q[X]$ such that $f(\alpha) = 0$ for all $\alpha \in F_q[X]$. (4)
 - (b) Factor $X^9 X$ and $X^{27} X$ over F_3 in to irreducible polynomials. (6)
- 3. (a) Let F be a field and $f \in F[X]$. Show that there exists a finite extension L of F such that f factors into linear polynomials in L[X]. (6)
 - (b) Determine the degree of the splitting field of the following polynomials over $Q: X^4 1, X^3 2, X^4 + 1.$ (4)
- 4. Let K be a splitting field of the polynomial $X^4 3$ over Q.
 - (a) Prove that [K:Q] = 8. (3)
 - (b) Prove that the Galois group of K over Q is dihedral and describe the action of this group on the roots of the above polynomial. (7)
- 5. (a) Let $F \subset L \subset K$ be fields. Prove or disprove:
 - 1. If K/F is Galois, then K/L is also Galois.
 - 2. If K/F is Galois, then L/F is also Galois.
 - 3. If L/F and K/L are Galois, then so is K/F. (7)
 - (b) Determine all automorphisms of the field $Q(\sqrt[3]{5})$. (3)
- (a) Let K/F be a Galois extension whose Galois group is S₃. Prove or disprove: K is the splitting field of an irreducible cubic equation over F.
 - (b) Prove the best generalisation you can of the above problem. (4)
- 7. (a) Let $F(\alpha)$ be a quadratic extension of F such that $\alpha^2 \in F$. Determine all the elements of $F(\alpha)$ whose squares are in F. (4)
 - (b) Let β be the real root of $X^3 + X + 1$. Prove or disprove; $Q(\beta)$ is generated by a cube root of a rational number. Compare your result with Kummer's theorem on prime degree extensions of certain fields. (6)